
Artificial Intelligence and Unit Distance Graphs
Let X ⊆ Rn be a finite subset. We can give X the structure of an undirected graph called a Unit Distance
Graph (UDG) by letting the edge set comprise those vertex pairs {x, y} ⊆ X that are unit distance apart:
|x − y| = 1. The question of what is the maximum number of edges of a UDG of a given number of vertices is
still open since was posed by Erdős in 1946 [1]. Even the asymptotic behavior is unclear as the known upper
and lower bound are quite far apart: see [2] resp. [3] for the planar, and [4] resp. [5] for the spatial case.

The aim of this project is to study UDGs that are dense, that is they have a high edge count. We try to use
computer search. This is an ongoing project, involving several BSM students and multiple members of the AI
group at the Rényi Institute.

With the Spring and Summer 2023 groups, we developed a computer search algorithm that could find all the
densest known planar UDGs in [2, Table 1], and moreover go on and find dense UDGs up to vertex number
100. We recently finished the paper that describes our method [6].

With the groups that came after, we were working on multiple directions to improve the result and extend it
to other Euclidean spaces like the 2-sphere or 3-dimensional space. I will be happy to expound in person on
the many great ideas that recent groups came up with and explored.

This semester, our primary focus will be realization: given an abstract graph, can we decide if it is isomorphic
to a UDG in a given Euclidean space, or yet better, can we enumerate all possible realizations, if they exist?

Prerequisites
Strong command of the Python numerical library numpy.

Qualifying problems
1. Write a function

get_new_vertices(
addends: np.ndarray,
parent: np.ndarray

) -> np.ndarray

that given an integer array addends of shape (a, d) and an integer array parent of shape (n, d), returns an
array new_vertices of shape (a · n, d) the rows of which are u + v such that u is a row of addends and v is
a row of parent.

Bonus: Make the function accept batches of parents. That is, if parent has shape (b1, . . . , bk, n, d), then the
function should return an array new_vertices of shape (b1, . . . , bk, a · n, d) such that for 0 ≤ ij < bj for 1 ≤
j ≤ k, the 2-array new_vertices[i1, . . . , ik] is equal to get_new_vertices(addends, parent[i1, . . . , ik]).

2. Write a function

get_dedupe_mask(
new_vertices: np.ndarray,
parent: np.ndarray

) -> np.ndarray

that given an integer array new_vertices of shape (m, d) and an integer array parent of shape (n, d), returns
a Boolean array dedupe_mask of shape (m, ) such that for 0 ≤ i < m, the Boolean value dedupe_mask[i]
says if new_vertices[i] is not equal to a row of parent or a row of new_vertices[:i].



Bonus: Make the function accept batches of new vertices and parents. That is, if new_vertices has
shape (b1, . . . , bk, m, d) and parent has shape (b1, . . . , bk, n, d), then the function should return a Boolean
array dedupe_mask of shape (b1, . . . , bk, m) such that for 0 ≤ ij < bj for 1 ≤ j ≤ k, the 1-array
dedupe_mask[i1, . . . , ik] is equal to get_dedupe_mask(new_vertices[i1, . . . , ik], parent[i1, . . . , ik]).

In each problem, to improve your evaluation, you can try to vectorize your solution, that is use as few explicit
iterations (such as ones using for, while, map, recursion, etc.) along array dimensions as possible. This
will greatly improve the speed of your code. To this end, you can peruse the built-in functions in numpy,
advanced indexing and broadcasting.

You can hand in the qualifying problems by writing the functions in the file qualifying_problems_fall_2024.py
included in the research project description. The file includes test cases, you just have to run it to test your
solutions.

You can hand in multiple versions. Of each problem, I will evaluate the latest submission. A valid submission
must arrive to my email address by August 27, 11:59PM CEST (UTC +02:00). You can expect me
to answer a question before this time if it arrived to my email address by August 26, 11:59PM CEST
(UTC +02:00).

In your email, please also write me the following:

1. Your Mathematics and Computer Science background.

2. Your Mathematics and Computer Science interests.

3. What do you find especially interesting in this project?

Have fun with the problems and hope to see you in the group!

Contact
Pál Zsámboki, zsamboki@renyi.hu, Alfréd Rényi Institute of Mathematics
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