Artificial Intelligence and Unit Distance Graphs

Let X C R"™ be a finite subset. We can give X the structure of an undirected graph called a Unit Distance
Graph by letting the edge set comprise those vertex pairs {z,y} € X that are unit distance apart: |z —y| = 1.
The question of what is the maximum number of edges of a UDG of a given number of vertices is still open
since was posed by Erdés in 1946 [1]. Even the asymptotic behavior is unclear as the known upper and lower
bound are quite far apart: see [2] resp. [3] for the planar, and [4] resp. [5] for the spatial case.

The aim of this project is to try to improve the lower bound by looking for UDGs that are dense, that is they
have a high edge count. We try to use computer search. This is an ongoing project, involving several BSM
students and multiple members of the Al group at the Rényi Institute. Right now, we are considering the
following two directions:

1. In Spring and Summer 2023 RES projects, we have developed a computer search algorithm that could
find all the best known planar UDGs in [2, Table 1], and moreover go on and find dense UDGs up to
vertex number 100. We are actually in the process of writing a paper about this!

In the Autumn 2003 RES project, we used this data to create a poset of isomorphism classes of dense
UDGs ordered by the subgraph relation. A possible direction is to seek to improve the lower bound by
trying to find in this poset a construction pattern that we can continue indefinitely.

2. Also in Autumn 2023 we ventured into space: we laid the foundations for searching for UDGs in R?:

(a) Using heuristic search, we found a couple of finite spatial subsets that approximate dense UDGs.
What remains is to find the actual exact embeddings. We have a way of doing this in the planar
case; let’s extend it to space!

(b) We are also yet to try out in the spatial case the search method that was quite successful in finding
dense planar UDGs. With adapting the code, we are sure to find interesting dense spatial UDGs!

Prerequisites

Strong command of the Python numerical library numpy.

Qualifying problem
Write a function
count_edges(vertices: np.ndarray, atol=1e-8, rtol=le-5) -> int

that given a finite subset X C R" of a FEuclidean space, represented by vertices, a 2-dimensional float
np.ndarray, returns the number of edges of the UDG determined by X.

The optional arguments atol and rtol determinte the numerical precision: given two floating point numbers
a and b, we treat them as equal if and only if we have

absolute(a - b) <= (atol + rtol * absolute(b)).
Try not to use a python loops but use effective, vectorized numpy operations.

You can hand in the qualifying problem by writing the function in the file qualifying_problem_spring 2024.py
included in the research project description. The file includes test cases, you just have to run it to test your
solution.

Contact

Pal Zsdmboki, zsamboki®@renyi.hu, Alfréd Rényi Institute of Mathematics


mailto:zsamboki@renyi.hu
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